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Abstract

Following a preliminary revisitation of the nomencla-
tures in use for mica polytypes, the properties of the
periodic intensity distribution (PID) function, which
represents the Fourier transform of the stacking
sequence, are analysed. On the basis of the relative
rotations of neighbouring layers, mica polytypes are
classi®ed into three types; for each type, the PID exists
in different subspaces of the reciprocal space. A revised
procedure to compute the PID, in which further
restrictions on the structural model orientation are
introduced, is presented. A unifying terminology based
upon the most common symbols used to describe mica
polytypes (RTW, Z and TS) is derived; these symbols
represent the geometrical basis for the computation of
the PID. Results are presented for up to four layer
polytypes and are compared with the re¯ection condi-
tions derived by means of Zvyagin's functions. Both the
PID values and the re¯ection conditions are expressed
in suitable axial settings and compared with previous
partial reports, revealing some errors in previous
analyses. A computer program to compute PID from
the stacking symbols is available.

1. Introduction

Micas are phyllosilicates with general formula
IM2±3T4O10A2 (Rieder et al., 1998) (I: interlayer cations;
M: octahedral cations; T: tetrahedral cations; A = O, OH,
F, Cl). They are built by stacking a 2:1 or T±O±T
(tetrahedral±octahedral±tetrahedral) layer (Figs. 1 and
2) with interlayer cations between adjacent layers. The
T±O±T layer is commonly considered as a cleavage unit
(Kogure, 1997) and polytypism arises from the stacking
of this layer with n � 60� rotations (0 � n � 5) (Smith &
Yoder, 1956). Polytypes in which the position of any
layer relative to the others and the transition from it to
the adjacent layers are the same or equivalent for all

layers are called homogeneous polytypes (Zvyagin,
1988). The homogeneous polytypes were ®rst derived by
Smith & Yoder (1956), who called them `simple poly-
morphs'. By using Ramsdell (1947) notation, these
polytypes are identi®ed as 1M, 2M1, 3T, 2M2, 2O and 6H
[symbols according to Guinier et al. (1984)]. On the basis
of the symmetry of the O sheet, homogeneous polytypes
have been divided into three families of MDO
(maximum degree of order) polytypes (Backhaus &
DÏ urovicÏ, 1984; see below).

Several authors have used different symbols and
approaches to deal with the problem of identifying the
stacking sequence of mica polytypes. The most relevant
results have been published in different journals and
languages during the past forty years; therefore, they are
brie¯y summarized below. The most powerful tool for
unravelling the stacking sequence appears to be the
comparison between the observed and calculated values
of the periodic intensity distribution (PID) function.
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Fig. 1. The octahedral sheet of micas shown in (001) projection. The
M1 sites are shaded, M2 sites are not shaded; concentric circles
indicate OH/F groups. A1 and A2 are hexagonal axes: they are
rotated 30� clockwise from the orientation given by Sadanaga &
Takeda (1969) and Takeda & Sadanaga (1969). a and b are
orthohexagonal axes, traced according to the standard orientation
for Z symbols (Zhukhlistov et al., 1990); they correspond to the
orthohexagonal cell C1 as de®ned by Arnold (1996).

² Present address: National Institute for Research in Inorganic
Materials, Research Center for Creating New Materials, 1-1 Namiki,
Tsukuba-shi, Ibaraki 305-0044, Japan.
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This is the Fourier transform of the stacking sequence,
obtained by removing the modulating effect of the layer
transform from the structure factor (Takeda, 1967;
Sadanaga & Takeda, 1969; Takeda & Sadanaga, 1969;
Takeda & Ross, 1995; see below). Hereinafter, the
conditions under which PID can be obtained are revised,
the computation procedure is rede®ned and a general
correlation among the symbols involved is derived.

Hexagonal axes in the plane of the layer are hence-
forth indicated as (A1, A2), whereas orthohexagonal
axes are represented as (a, b). Diffraction indices
expressed in hexagonal axes are written as upper-case
letters (HK.L), whereas those expressed in orthohex-
agonal or monoclinic axes are written as lower-case
letters (hkl). The orientation of the (a, b) axes with
respect to (A1, A2) is that between the orthohexagonal
C1 cell and the hexagonal P cell [see the work of Arnold
(1996) and Nespolo, Takeda & Ferraris (1997) and
Nespolo et al. (1998)].²

1.1. Choice of the unit layers

Following TakeÂuchi (1971) and TakeÂuchi & Haga
(1971), the T±O±T layer is henceforth called the M
layer. Three translationally independent cationic sites
exist in the O sheet. One site is trans-coordinated by
OH/F and is labelled M1; when the layer is centrosym-
metric, the centre of symmetry is at this site. The
remaining two sites are cis-coordinated by OH/F and are
labelled M2; when the layer contains a symmetry plane,
this plane relates the two M2 sites (Fig. 1). Depending
on the occupation of the M sites, micas are divided into
tri-octahedral and di-octahedral types. Then, on the
basis of the distribution of the cations in these sites, the
symmetry of the octahedral sheet can be H��3�12=m
(homo-octahedral: the three sites are occupied by the
same cation), P��3�12=m (meso-octahedral: one site is
occupied by a cation different from that in the other two
sites) or P(3)12 (hetero-octahedral: all the three sites
are differently occupied) (DÏ urovicÏ, 1994a) [layer-group
notation after Dornberger-Schiff (1959), details given by
Merlino (1990)]. In the so-called Pauling model
(Pauling, 1930), the T sheets have layer symmetry
P(6)mm. In the real structure, because of the difference
in the lateral dimensions of the T and O sheets, tetra-
hedra rotate around c� (TakeÂuchi & Sadanaga, 1959)
and the degree of rotation depends mainly upon the
chemical composition and the temperature (Takeda &
Mori, 1970; Takeda & Morosin, 1975; Catti et al., 1989).
The model that takes into account this rotation is
hereinafter called the trigonal model. The trigonal
model is also known as the Radoslovich model (Rado-

slovich, 1961). It was proposed for the ®rst time by Belov
(1949). The tetrahedral rotation reduces the symmetry
of the T sheets to P(3)1m. The two T sheets within a
layer are staggered by jaj=3 in (001) projection; there-
fore, in both models the ideal layer symmetry of the M
layer is C12=m�1� (homo- and some meso-octahedral
micas) or C12(1) (the remaining meso-octhaedral and
all hetero-octahedral micas) (Dornberger-Schiff et al.,
1982). However, the symmetry of a layer may depend on
its stacking in a polytypic structure; the deviation from
the ideal symmetry has been called `desymmetrization'
(DÏ urovicÏ, 1979). Desymmetrization is commonly
observed in 2M1 and 3T polytypes, where the layer
symmetry is usually C�1 and C12(1), respectively (Pavese
et al., 1997, 1998). In margarite-2M1, further desymme-
trization to C1 has been reported (Guggenheim &
Bailey, 1975, 1978). The space-group type can allow but
does not force the desymmetrization; as a matter of fact,
the highest layer symmetry C12=m�1� was observed,
within the limit of the accuracy of the structure re®ne-
ment, in coexisting 1M and 2M1 meso-octahedral
oxybiotites having truly polytypic character (Ohta et al.,
1982).

The origin of the M layer is usually taken in the
interlayer region; the location of the origin of the O
sheet in itself depends on the kind and distribution of
the cations. It is always taken in the M1 site for homo-
octahedral micas; however, in meso-octahedral micas it
is in the site with different occupation and in hetero-
octahedral micas corresponds to the site containing the
lowest electronic density (DÏ urovicÏ et al., 1984). For these
micas, the origin of the O sheet can thus be either in the
M1 site or in one of the two M2 sites. As a consequence,

Fig. 2. Comparison between different unit layers for mica polytypes in
projection along the b axis. Different kinds of stacking vectors are
shown. The scale along c is compressed. Black and open small circles
represent M1 and M2 sites, respectively. Large open circles are
interlayer cations.

² The orthohexagonal cell used since long ago in describing micas
corresponds to C1 (e.g. Donnay et al., 1964). Other authors, such as the
OD school, adopted the C2 cell (e.g. DÏ urovicÏ et al., 1984). This different
choice of the orthohexagonal cell has to be taken into account when
comparing the descriptions by different authors.
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two kinds of M layer exist, which are hereinafter indi-
cated as M1 and M2, respectively, when a distinction is
necessary. Their highest layer symmetries are C12=m�1�
and C1(2)1, respectively (Zvyagin, 1974). These two
layers can be distinguished only if their cation distri-
bution is known. For example, hetero-trioctahedral 1M
micas have been re®ned by Backhaus (1983) (lepidolite)
and Guggenheim & Bailey (1977) (zinnwaldite) in the
space group C2. Both structures had the highest hetero-
octahedral layer symmetry C12(1), but the lepidolite
was constructed by M1 layers whereas the zinnwaldite
was built by M2 layers. Guggenheim (1981) re®ned a
meso-octahedral lepidolite-1M in the space group C2
with layer symmetry C12(1): the cation distribution
shows that the lower layer symmetry arises from the
presence of the M2 layer and not from a desymme-
trization of the M1 layer. The M1 layer is far more
common. However, several examples of micas built by
the M2 layer are known [Zvyagin et al., 1985; see
references in: DÏ urovicÏ et al., 1984; Nespolo, 1998].

Although a single type of unit layer is suf®cient to
describe polytypism of micas, the choice of more than
one type is suitable for some purposes. To show the OD
(OD = order±disorder) character of mica polytypes, two
kinds of OD layers and one kind of OD `packet'
(corresponding to half M layers) are used (Dornberger-
Schiff et al., 1982). To compute PID, Sadanaga & Takeda
(1969) and Takeda & Sadanaga (1969) introduced four
unit layers with idealized trigonal symmetry (TS unit
layers), de®ned by two adjacent half M1 layers and the
interlayer cations between them (Fig. 2). These layers
are labelled D, D� [P��3�1m symmetry for homo-octa-
hedral micas], T and T� [P��6�2m symmetry for homo-
octahedral micas] and are staggered by means of jaj=3
translations along one of the equivalent hexagonal axes.
D is related to D� and T to T� by a 180� rotation around
c� (Fig. 3).

1.2. Mica polytypes as OD structures: family re¯ections

Polytypes in which M layers are rotated by 2n � 60�

only are OD polytypes belonging to subfamily A
(Backhaus & DÏ urovicÏ, 1984)² and the coordination
polyhedron for the interlayer cations is a trigonal anti-
prism. Subfamily A includes the three most common
homogeneous (MDO) polytypes (1M, 2M1, 3T) and
most of the inhomogeneous polytypes reported to date.
On the other hand, polytypes in which M layers are
rotated by (2n� 1) � 60� only are OD polytypes
belonging to subfamily B (Backhaus & DÏ urovicÏ, 1984)
and the coordination polyhedron for the interlayer
cations is a trigonal prism. Only two homogeneous
(MDO) polytypes belonging to subfamily B have been
reported to date: 2M2 (e.g. Takeda & Burnham, 1969;

CÏ ernyÂ et al., 1970; Takeda et al., 1971; Zhukhlistov et al.,
1973) and 2O (Giuseppetti & Tadini, 1972; Filut et al.,
1985). The remaining polytypes are called mixed-rota-
tion polytypes (Nespolo, 1999); within the trigonal
model, they contain both kinds of interlayer coordina-
tion polyhedra, violating the vicinity condition (Dorn-
berger-Schiff, 1964), and thus are non-OD polytypes.
They have been only seldom reported (Takeda, 1967;
Bailey & Christie, 1978; Rule et al., 1987; Kogure &
Nespolo, 1999a,b) and the relatively low quality of the
structure re®nement does not give information on the
tetrahedral rotation angle. Backhaus & DÏ urovicÏ (1984)
suggested that this could be zero, thus corresponding to
the Pauling model. In such a case, mixed-rotation
polytypes would be OD polytypes too.

A Fourier series calculated with a three-dimensional
subset of diffractions corresponding to a subgroup of
translations in the reciprocal lattice gives a ®ctitious
average structure, which is called a superposition
structure. An n-fold superposition structure is obtained
from a translation subgroup of order n (Dornberger-
Schiff, 1964; DÏ urovicÏ, 1994b). Among the possible
superposition structures, the one in which all the
possible positions of all OD layers are simultaneously
realized is of particular importance; it has also been
called `family structure' (DÏ urovicÏ, 1994b). The subset of
the diffractions corresponding to the family structure
are called family re¯ections; they are always sharp and
are common to all the OD polytypes built on the same
structural principle (DÏ urovicÏ & Weiss, 1986). The
remaining ones are called non-family re¯ections and are
typical of each polytype; they are sharp or diffuse
depending on whether the polytype is ordered or not
(DÏ urovicÏ, 1992, 1997; DÏ urovicÏ & Weiss, 1986; Fichtner-
Schmittler, 1979; Merlino, 1997). The family re¯ections
indicate whether a polytype belongs to subfamily A or B
or it is a mixed-rotation polytype. Then, non-family
re¯ections belonging to the (0kl) plane (common to all
polytypes with the same bc projection: C1 setting) are in
principle enough to identify any polytype of mica,
except homometric structures (Weiss & WiewioÂ ra, 1986;
DÏ urovicÏ, 1992).

Within the Pauling model, the family re¯ections are
those with h � 0 �mod 3� and k � 0 �mod 3� (C1 setting)
and the family structure is ninefold (Weiss & WiewioÂ ra,
1986). These are the only family re¯ections for mixed-
rotation polytypes, but they are not useful for identi®-
cation purposes because they are common to all poly-
types of the same mineral group (DÏ urovicÏ, 1994b). On
the other hand, within the trigonal model, the family
re¯ections are those with k � 0 �mod 3� and the family
structure is threefold (Weiss & WiewioÂ ra, 1986). Family
re¯ections corresponding to h 6� 0 �mod 3� show only
one re¯ection out of N (N is the number of layers of the
polytype) in the case of subfamily A, but two equally
spaced re¯ections in the case of subfamily B (Nespolo,
1999).

² Takeda & Ross (1995) called ternary polytypes the OD subfamily A
polytypes.
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Fig. 3. The four TS unit layers. a, b: orthohexagonal axes of the C1 setting; a1±a6: structure-related a orthohexagonal axes in the six possible
orientations (Zhukhlistov et al., 1990); A1, A2: hexagonal axes. The six digits 1±6 indicate the intralayer displacement vectors: these are
superimposed on the projection of each of the four TS unit layers. Since each TS layer is de®ned from the O sheet of an M layer to the O sheet
of the successive M layer, two sets of a1±a6 axes should be considered, both with the origin in the M1 site. These two sets de®ne the orientation
of the upper intralayer displacement vector of the lower M layer and of the lower intralayer displacement vector of the upper M layer. In order
to improve the readability of the ®gure, only the ®rst sets are shown. Black and open small circles represent M1 and M2 sites, respectively.
Concentric circles represent overlapped interlayer cations and OH/F. u and l indicate octahedral cations with z � �1=2 and z � ÿ1=2,
respectively. For T and T� layers these are overlapped in (001) projection.
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1.3. Lattice features

Orthogonal mica polytypes can be hexagonal (no
examples known), trigonal and orthorhombic; the lattice
of triclinic polytypes is metrically (pseudo-)monoclinic.
Non-orthogonal polytypes are divided into Class a and
Class b depending on whether the c axis is inclined
towards the shortest or towards the longest of the two
axes in the plane of the layer (Nespolo et al., 1998). This
classi®cation corresponds to different values of the (001)
projection of the c axis, labelled cn by Zvyagin (1997). In
all mica polytypes, a pseudo-hexagonal lattice can be
located, which is multiple for non-orthogonal polytypes;
for Class b polytypes this lattice is centred and a
markedly pseudo-rhombohedral primitive cell exists
(Nespolo, 1999). The number N of layers building a
polytype can be expressed as

N � 3n�3K � L�; �1�
where K and n are non-negative integers and L � 1 or 2.
n de®nes the series and L the subclass; K is a constant
entering in the transformation matrices relating axial
settings (Nespolo et al., 1998).

1.4. Identi®cation of the stacking sequence

The Fourier transform of a polytype is given by the
Fourier transform of the stacking sequence, which is a
fringe function (Lipson & Taylor, 1958), modulated by
the Fourier transform of the layer(s) (Takeda, 1967).
The layer transform is a nondiscrete function in the
direction without periodicity, i.e. that indicated in
parentheses in the layer symbol. When the building
layers are related by just an integral submultiple of the
translation period, it is possible to extract their Fourier
transform from the expression of the structure factor,
which thus assumes the simple form of a product of the
layer transform and of the stacking sequence transform
(see below). This second term expresses the periodicity
in reciprocal space appearing when a structure is built by
translation of subunits. This was independently recog-
nized by Takeda (1961) and, more indirectly, by
Andreeva (1962). The periodicity in reciprocal space
has been used to solve the structure of zinkenite
(PbS � Sb2S3) (Takeda, 1961; Sadanaga & Takeda, 1964;
Takeda & Horiuchi, 1971) and to identify minerals with
a mixed-layer structure (D'yakonov, 1962, 1963). It has
been successfully applied to identify the stacking
sequences of polytypes of micas (Takeda & Donnay,
1965; Ross et al., 1966; Takeda, 1967), of SiC (Tokonami
& Hosoya, 1965; Tokonami, 1966) and of SiC and ZnS
(Farkas-Jahnke, 1966; Dornberger-Schiff & Farkas-
Jahnke, 1970; Farkas-Jahnke & Dornberger-Schiff,
1970). The Fourier transform of SiC and of the ZnS unit
is much different from the atomic scattering factors, and
the periodicity is recognized without dif®culty. In the
case of micas, the unit layer is 10 AÊ thick and the peri-
odicity is not easily recognized. With the obvious

exception of the 1M polytype, subsequent layers are
related by both translations and rotations. However, for
a subspace of the reciprocal space, the Fourier transform
of the M layer in the six possible orientations is almost
unmodi®ed (Takeda, 1967). Removal of the modulating
effect of the layer gives the approximated Fourier
transform of the stacking sequence. This is known as the
periodic intensity distribution (PID) function (Takeda,
1967; Sadanaga & Takeda, 1969; Takeda & Sadanaga,
1969; Takeda & Ross, 1995). Comparison of calculated
and observed PID values along non-family reciprocal-
lattice rows parallel to c� is in principle suf®cient to
identify any mica polytype (Takeda & Ross, 1995).

2. Symbolic description and layer orientation

General symbols to describe mica polytypes have been
developed by the OD school (Dornberger-Schiff et al.,
1982; Backhaus & DÏ urovicÏ, 1984; DÏ urovicÏ et al., 1984;
Weiss & WiewioÂ ra, 1986). However, for the purposes of
the present research, three kinds of symbols are used
here.

(i) Z symbols (Zvyagin et al., 1979; Zvyagin, 1985;
Zhukhlistov et al., 1990) are oriented symbols giving the
absolute orientation and relative displacement of half M
layers. A space-®xed orthohexagonal reference is used,
based on (a, b) axes [C1 setting of Nespolo et al. (1998)].
The stacking sequence is indicated by the (001) projec-
tion of the intralayer displacement vectors, with length
jaj=3; these vectors connect the origin of the O sheet
with the nearest interlayer site and vice versa (the
sequence of layers must be seen from the same direc-
tion). The six possible orientations of these vectors are
indicated by six structure-related ai axes (i � 1±6). Their
(001) projection is indicated by the Z symbol i
(i � 1; 2; . . . ; 6) when the ai axis is parallel to the space-
®xed axis a (Figs. 2 and 3). The complete Z symbol is
ij0kl0mn . . . , where 0 indicates the only interlayer
displacement vector in micas, whose (001) components
are (0, 0) (because of the presence of interlayer cations,
there is no relative displacement between two neigh-
bouring M layers in micas). Symbols giving the orien-
tation of the two halves of an M layer (i and j, k and l, m
and n etc.) must have the same parity in order to obtain
an octahedral coordination for the cations. Besides, for
micas built by M1 layers, i = j, k = l, m = n etc.; the symbol
0 can be omitted and a shortened symbol IKM . . . is
adopted (Zhukhlistov et al., 1990; see Fig. 1 therein). For
micas built by M1 layers only, the complete displace-
ment vectors (Z vectors, hereinafter) are thus simply
obtained by taking twice the intralayer displacement
vectors.

(ii) RTW symbols (Ross et al., 1966) are orientation-
free rotational symbols giving the relative rotation
between neighbouring M layers; they can be thought of
as differences between pairs of shortened Z symbols.
RTW symbols are written as a sequence of N digits
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Aj � 0;�1;�2; 3, the jth symbol giving the rotation
angle between the jth and ( j� 1)th M layers as an
integer multiple of 60�.²

(iii) TS symbols (Sadanaga & Takeda, 1969; Takeda &
Sadanaga, 1969) give the relative positions of TS unit
layers by means of only displacements and no rotations.
TS symbols are written as a sequence of N symbols
Lj(�Xj, �Yj), 1 � j � N, where Lj is the kind of layer,
(D, D�, T, T�) and (�Xj, �Yj) are the (A1, A2) compo-
nents of the shift vector between the jth TS layer and the
Nth TS layer of the previous repeat (Fig. 2).

Only Z symbols can distinguish between M1 and M2
layers. Since PID is computed by means of TS symbols
(see below), the stacking sequence obtained from PID
analysis is the one for homo-octahedral micas. There-
fore, hereinafter the approximation M1 = M2 = M is
called the homo-octahedral approximation.

The stacking sequence of mica polytypes is quite
often described by means of the stacking vectors
according to the original de®nition of Smith & Yoder
(1956), i.e. the (001) projection of vectors connecting
two nearest interlayer cations on the two sides of a layer
(Fig. 2). Unlike Z vectors, these vectors do not pass
through any cation site in the O sheet. Therefore,
stacking vectors of Smith & Yoder (1956) cannot
distinguish between M1 and M2 layers and they too
correspond to the homo-octahedral approximation.³

Both the M layer and the TS unit layers have the
origin in the interlayer region. However, TS unit layers
are shifted along [001] by half the thickness of the M
layer (Fig. 2) (Sadanaga & Takeda, 1969; Takeda &
Sadanaga, 1969); therefore, the origin of the jth TS unit
layer is in the interlayer region where the origin of the
( j� 1)th M layer is located. Besides, the jth TS unit
layer is de®ned by the relation between the jth and the
( j� 1)th M layers: D and D� layers appear in the middle
of two M layers rotated by 2n � 60� [i.e. the RTW
symbol is Aj � 0 �mod 2�], while T and T� layers appear

in the middle of two M layers rotated (2n� 1) � 60� [i.e.
Aj � 1 �mod 2�].

The origin of Zvyagin's coordinate vectors is in the O
sheet, but Z vectors are de®ned as the (001) projection
of the vectors passing through the origin of the O-sheet
site and connecting two interlayer sites below and above
an M layer (Zvyagin et al., 1979). The jth Z vector gives
thus the (a, b) components of the displacement between
the jth and the ( j� 1)th M layers (Fig. 2). As seen
above, in the homo-octahedral approximation, Z vectors
are just twice the intralayer displacement vectors; their
(a, b) components are given in Table 1.

The four TS unit layers, together with intralayer
displacement vectors, are shown in Fig. 3. In these layers,
the atoms have identical coordinates except those of MO

and OB, the hexagonal coordinates of which are
presented in Table 2 (Sadanaga & Takeda, 1969; Takeda
& Sadanaga, 1969). The lower octahedral sheet of the jth
TS layer is the octahedral sheet of the jth M layer. By
labelling o (odd) and e (even) the orientation parity of Z
symbols of half layers, the following correspondences
with the complete Z symbols are obtained from Fig. 3:

D � o0o; D� � e0e; T � e0o; T� � o0e: �2�

3. PID in terms of TS unit layers

Every mica polytype can be approximately described by
means of one or more TS unit layers, with mutual
staggers of jaj=3 along one of the hexagonal axes
(Sadanaga & Takeda, 1969; Takeda & Sadanaga, 1969),
and two neighbouring TS layers must connect a half M
layer with the same orientation parity. On the basis of
equations (2), there are only eight possible pairs of TS
unit layers (DD; D�D�; TT�; T�T; DT�; D�T; TD; T�D�).
Besides, in order to match the cation positions, the layer
stacked over a D or T layer has to be shifted by ÿa=3,
whereas the layer stacked over a D� or T� layer has to be
shifted by �a=3 (Table 2). The Fourier transform of an
N-layer mica polytype in terms of TS unit layers in
hexagonal axes is expressed as [modi®ed after Takeda &
Sadanaga (1969)]:

GN�HK:L� � PN
j�1

Gj�HK:LR� exp
�

2�i�H�Xj � K�Yj

� L� jÿ 1�=N�	: �3�
Gj(HK.LR) is the Fourier transform of the jth TS unit
layer, which is two-dimensionally periodic. In the
direction without periodicity, the reciprocal-lattice
coordinate is not restricted to integral values but is a real
variable and is here labelled LR. In equation (3), Gj

plays a role analogous to that of the atomic scattering
factor in the expression of the structure factor.

As shown above, the atomic coordinates in the four
TS unit layers differ only for OB and MO, but within the

Table 1. Z symbols and (a, b) components (expressed as
multiples of 1/3) of the corresponding Z vectors with

respect to the space-®xed reference (Zvyagin, 1967)

Z symbol (a, b) components Z symbol (a, b) components

3 (�1, 0) 6 (1, 0)
4 (1, 1) 1 (�1,�1)
5 (�1, 1) 2 (1,�1)

² It is now common to see RTW symbols written inside square
brackets; their use was not speci®ed by the authors in their original
paper (Ross et al., 1966).
³ Stacking vectors similar to those of Smith & Yoder (1956) were
introduced earlier by Dekeyser & Amelinckx (1953) as the projection
of the vector connecting two OH/F sites within an M layer. A
numerical symbolism similar to that of Zvyagin and co-workers was
also introduced, which, however, considered whole M layers and not
half M layers. The description by Dekeyser & Amelinckx (1953) is
correct in the homo-octahedral approximation.
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Pauling model the OB atoms also take the same ideal
coordinates in all the four TS unit layers (Table 2).
Besides, the contributions from the MO cations to the
layer Fourier transform become identical when the
following conditions are satis®ed (cf. Sadanaga &
Takeda, 1969; Takeda & Sadanaga, 1969; Takeda &
Ross, 1995):

H � 0 �mod 3�; all K;

H � 1 �mod 3�; K 6� 1 �mod 3�;
H � 2 �mod 3�; K 6� 2 �mod 3�;

h � 0 �mod 3�; all k;

h 6� 0 �mod 3�; k 6� 0 �mod 3�: �4�
Consequently, Gj is identical for all j (Gj = G0) and the
contribution of the Fourier transform of the layer can be
extracted from the summation in (3), obtaining the PID
function SN:

SN�HK:L� � GN�HK:L�=G0�HK:LR�

�PN
j�1

exp
�

2�i�H�Xj � K�Yj

� L� jÿ 1�=N�	: �5�
Since the non-90� angle can be either � or �, the relation
between L and LR depends on the Class and is given in
Table 3 for orthohexagonal (h, k) and hexagonal (H, K)
indices.

PID as de®ned in equation (5) exists in a subspace of
the reciprocal space, which is identi®ed by equation (4).
As shown by Sadanaga & Takeda (1969) (see their Fig.
4), (4) locates the subspace of the non-family re¯ections
plus reciprocal-lattice rows parallel to c� with both h and
k � 0 �mod 3�; these re¯ections, as stated above, are

family re¯ections corresponding to the ninefold family
structure (common to all mica polytypes).

Within the trigonal model, the OB atomic coordinates
are no longer identical; however, from Table 2 and Fig. 3
it is easy to verify that the OB contribution to Gj in all
the four TS unit layers is the same when

H � 0; all K; K � 0; all H; H � ÿK;

h � 0; all k; h � �k: �6�

For these re¯ections, Gj � G0 and equation (5) holds
again.

Finally, PID is de®ned in a subspace of the reciprocal
space, which narrows from polytypes of subfamily A to
mixed-rotation polytypes in the following way (Fig. 4).

(i) Polytypes of subfamily A involve only 2n �60�

rotations of the M layer (same orientation parity of Z
symbols; all-even RTW symbols) and are thus described
by only one kind of TS layer (D or D� depending on the
orientation parity; see next paragraph). Therefore,
equation (5) is valid in the whole reciprocal space. For
identi®cation of individual polytypes, PID calculated
along each of the reciprocal-lattice rows parallel to c�

and belonging to non-family re¯ections can be used.
(ii) Polytypes of subfamily B involve only

(2n� 1) � 60� rotations of the M layer (alternating
orientation parity of Z symbols; all-odd RTW symbols).
For these polytypes, both T and T� layers are necessary;
in fact [equation (2)] TT� and TT� pairs are physically
possible, whereas TT and T�T� pairs are not. In these
two TS layers, the x coordinates of OB atoms are iden-
tical (Table 2). Therefore, equation (5) is valid under the
conditions given by (4). For identi®cation purposes, PID
in the whole subspace of the non-family re¯ections can
be used also in this case.

Table 3. Relation between the integral hexagonal LN index referred to an N-layer cell and the real LR orthogonal
reciprocal-lattice coordinate of the Fourier transform of the layer

Orthohexagonal (a, b) axes Hexagonal (A1, A2) axes

Orthogonal polytypes LR = LN/N LR = LN/N
Class a polytypes LR = LN/N � h/3N LR = LN/N � H/3N
Class b polytypes LR = LN/N � k/3N LR = LN/N � (H � 2K)/3N

Table 2. Hexagonal coordinates of the octahedral cations and basal oxygen atoms in the upper and lower halves of the
four TS unit layers

The coordinates of symmetry-independent atoms only are given. The hexagonal axes within the layer are assumed to have A1 coincident with a of
the space-®xed reference (see Fig. 3). f(�) and f( ) are functions of the ditrigonal rotation (�) and of the octahedral ¯attening ( ) and are given in
Table 1 of Takeda & Ross (1995).

D D* T T*

Upper MO (1/3, 0, 1/2) (�1/3, 0, 1/2) (1/3, 0, 1/2) (�1/3, 0, 1/2)
Lower MO (1Å /3, 0, 1Å /2) (1/3, 0, 1Å /2) (1/3, 0, 1Å /2) (1Å /3, 0, 1Å /2)
Upper OB [1/2 ÿ f(�), 0, 1/2 � f( )] [1/2 � f(�), 0, 1/2 � f( )] [1/2 � f(�), 0, 1/2 � f( )] [1/2 ÿ f(�), 0, 1/2 � f( )]
Lower OB [1/2 � f(�), 0, 1/2 ÿ f( )] [1/2 ÿ f(�), 0, 1/2 ÿ f( )] [1/2 � f(�), 0, 1/2 ÿ f( )] [1/2 ÿ f(�), 0, 1/2 ÿ f( )]
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(iii) Mixed-rotation polytypes correspond to different
non-alternating orientation parity of Z symbols, i.e. both
even and odd RTW symbols; in general, they require all
the four TS unit layers and equation (5) is valid only
under the conditions given by (6). Therefore, PID is
de®ned only for reciprocal-lattice rows parallel to c� and
belonging to the three planes (0kl), (hhl), ( �hhl), which
correspond to the ®rst, third, ®fth, eight, eleventh, . . .
ellipses of the oblique-texture electron diffraction
technique (Zvyagin, 1967).

In conclusion, PID is always de®ned at least in the
three planes (0kl), (hhl) and ( �hhl).

4. TS layers and choice of the axial setting

The theory of axial settings recently introduced
(Nespolo et al., 1998) aims at a uni®ed geometrical
treatment of the lattice of mica polytypes, mainly in view
of dealing with the long-period polytypes, the stacking
sequence of which can be determined by PID analysis. A
crucial step in order to compute PID is the determina-
tion of the space orientation of the structural model in
accordance with its space-group type. The correct
procedure is analysed hereinafter in terms of Series,
Classes and Subclasses, which represent the basis for the
choice of the most suitable structure-related axial
setting.

In Series 0 [n � 0 in equation (1)], polytypes of
subfamily A belong to Class a. By imposing
cn � ��1=3; 0�, it is easy to show that Subclass 1 polytypes
are described by all-odd Z symbols (D layers only),
whereas Subclass 2 polytypes are described by all-even
Z symbols (D� layers only). The origin of each layer is
displaced by ÿ1=3 (D layers) or �1=3 (D� layers) along
the a axis and 0, �1=3 along the b axis of the C1 setting.
The c axis passes through the origin of each layer and in
Subclass 1 it is displaced by ÿa=3 for each stacking of
layers; the resulting monoclinic angle is �1M. On the
other hand, in Subclass 2, the c axis is displaced�a=3 for
each stacking of layers and the resulting monoclinic
angle is �ÿ �1M, i.e. an acute monoclinic angle. For
Subclass 2 polytypes, it is convenient to choose a
monoclinic axial setting having cn � �1=3; 0�, so that
only the D layer is needed and the c axis is again shifted
by ÿ1=3 along a for each stacking of layers, with a
resulting monoclinic angle �1M. The correspondence
between Z symbols and D=D� layers is, however,
inverted, since Z symbols are de®ned with respect the C1

setting and thus do not change. Taking the translation-
ally reduced total displacement along the ÿa semi-axis
for Subclass 1 polytypes and along the �a semi-axis for
Subclass 2 polytypes, all Series 0 subfamily A polytypes
can be described by only D layers, with (ideally) the
same obtuse monoclinic angle of the 1M polytype. The
axial setting for Series 0 subfamily A polytypes corre-
sponds thus to the Fixed-angle setting (aF), introduced
by Nespolo et al. (1998); for all polytypes belonging to a
given Series, this setting has (ideally) the same mono-
clinic angle of the ®rst (i.e. shortest period) polytype of
that Series. Therefore, for Series 0 subfamily A poly-
types, the simplest layer description (by means of D
layers only) corresponds to the choice of the aF axial
setting.

In the case of a higher Series, polytypes of subfamily
A are either orthogonal or belong to Class b; in the
second case, the simple relation between the Subclass
and the parity of Z symbols (and thus the kind of TS
layer), seen in the case of Series 0, is no longer valid. In
fact, in Class b the parity of Z symbols depends on the
relative proportion of 0, 2 and ÿ2 digits in the RTW
symbols, and on their sequence. Besides, for subfamily B
and for mixed-rotation polytypes, two and more than
two different TS unit layers are necessary, respectively,
and the displacement of each layer is not always in the
same direction. The choice of the Fixed-angle axial
settings �3

n;a;3n;b�F (Nespolo et al., 1998) generalizes the
criterion valid for Series 0 subfamily A polytypes and is
the most natural setting when calculating PID by means
of TS layers. Furthermore, for an N-layer polytype, the
PID function SN�lN� is periodic with lN � 0;N ÿ 1,
where lN is the diffraction index referred to the N-layer
unit cell. Since the origin of SN�lN� is not ®xed a priori,
when comparing the computed and observed PID
values, in principle the cyclic permutations of the N

Fig. 4. (001) projection of mica reciprocal lattice. Direct- and
reciprocal-lattice axes are shown, not on the same scale (hexagonal
axes: A1, A2, A�1 , A�2 ; orthohexagonal axes: a, b, a�, b�). The
orthohexagonal axes locate the C1 cell [cf. Fig. 2 of Nespolo, Takeda
& Ferraris (1997)]. Open circles: family re¯ections for the ninefold
family structure (common to all mica polytypes). Open triangles:
family re¯ections for the threefold family structure but not for the
ninefold one (different for subfamily A and subfamily B OD
polytypes). Black circles: non-family re¯ections. The three planes
indicated (hkl: orthohexagonal indices; HK.L: hexagonal indices)
are the only ones in which PID is de®ned in the case of mixed-
rotation polytypes [modi®ed after Sadanaga & Takeda (1969)].
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values should be tried, as well as the inverse sequence.
In the �3

n;a;3n;b�F axial setting, the origin is automatically
®xed and that necessity is thus removed. However,
special attention is needed in the case of triclinic poly-
types belonging to Class b and Series higher than 0 (see
x8).

5. Structural model orientation and symbol conversion

The six possible orientations of the structural model of
each polytype with respect to the (a, b) axes correspond
to one and the same RTW symbol, but to six different
sequences of both Z symbols and TS symbols, and are in
general non-equivalent. Taking into account that:

(a) cn, translationally reduced, assumes components
(0, 0) (orthogonal polytypes), (�1=3; �0;�1=3�) (Class a
polytypes) and (0;�1=3) (Class b polytypes);

(b) by rotation around c�, cn for Class a polytypes can
always be reduced to (�1=3; 0) (Zvyagin, 1962, 1997);
the six orientations of the structural model can be
grouped in the following way.

(a) Class a polytypes. Each orientation corresponds to
a different cn projection.

(b) Class b polytypes. Three orientations correspond
to cn � �0; 1=3� and three others to cn � �0; �1=3�. The
three orientations with the same cn components are
equivalent in the case of triclinic polytypes, but not for
monoclinic ones. The symmetry elements in the C1

setting must be disposed according to an a-unique
setting. Only one of the three orientations leading to
cn � �0; �1=3� agrees with such a requirement.

(c) Orthogonal polytypes. All the six orientations
correspond to cn � �0; 0� and they are equivalent for
hexagonal, trigonal and triclinic polytypes, while for
orthorhombic and monoclinic polytypes only two
orientations, related by a 180� rotation around the
c � c� axis, lead to the correct disposition of the
symmetry elements.

The PID computation procedure described by Takeda
& Ross (1995) takes into account only the numerical
values of cn and not the equivalence/non-equivalence
relations. It is thus incomplete for Class b and orthog-
onal polytypes. By rede®ning the stacking operators rj

introduced by Takeda & Ross (1995) in terms of Z
symbols, the correct structural model orientation can be
obtained by analysing the symmetry properties of these
symbols. Then, the calculation of the PID function
requires the following steps.

Step 1 is the conversion from RTW symbols to
`provisional' Z symbols, by simply looking for
cn � �0; 0�; ��1=3; 0� or (0; �1=3). This is straightforwardly
obtained by means of a simple addition cycle:

Zj � Zjÿ1 � Ajÿ1 � j � 2ÿ N�: �7�
Z1 � 3 is assumed at ®rst; if the resulting cn projection
does not take one of the three expected values, Z1 is
incremented and equation (7) is recalculated.

Step 2 is the derivation of the correct Z symbols, by
analysing their symmetry properties. Symbols calculated
by means of equation (7) display the full symmetry of
the polytype. However, for orthogonal and Class b
polytypes, they may correspond to an orientation of the
symmetry elements not compatible with the space-group
type. In such a case, the sequence of Z symbols must be
changed, by making Z1 take one of the other values
leading to the same cn. This is tantamount to rotating the
structural model around c�. The space-group type needs
to be checked among only the 24 possible ones (Takeda,
1971) [for the relation between the two-dimensional
pseudo-hexagonal and hexagonal lattices in the plane of
the layer, see Nespolo, Takeda & Ferraris (1997) and
Nespolo, Takeda, Ferraris & Kogure (1997)]. The
symmetry properties of Z symbols for micas can be
numerically expressed as in Table 4, where the original
sequence of Z symbols is assumed to be IJ . . . P. The
correct sequence is found when Z symbols are related by
symmetry operators located along the lattice directions
compatible with the requirements of the space-group
type.

Step 3 is the expression of the stacking operators rj

(Takeda & Ross, 1995) as a function of Z symbols and
calculation of TS symbols. The stacking operators rj are
here rede®ned as giving the displacement between the
( jÿ 1)th and the jth TS layers. Their (a, b) components
are indicated as (xrj

; yrj
). The relation of the stack-

ing operators rj with Z symbols is straightforward

Table 4. Transformation rules for Z symbol sequences under the effect of the symmetry operators of the hexagonal
syngony

IJ . . . P is the original sequence of Z symbols. Proper and improper motions have representation matrices with determinants �1 and ÿ1,
respectively. Indexing is in orthohexagonal axes.

Proper motion Effect on Z-symbol sequence Improper motion Effect on Z-symbol sequence

[001]2n�/6 n � I, n � J, . . . , � n � P (001) 3 � P, . . . , 3 � J, 3 � I
[100]� 3 ÿ P, . . . , 3 ÿ J, 3 ÿ I (100) 3 ÿ I, 3 ÿ J, . . . , 3 ÿ P
[310]� 4 ÿ P, . . . , 4 ÿ J, 4 ÿ I (110) 4 ÿ I, 4 ÿ J, . . . , 4 ÿ P
[110]� 5 ÿ P, . . . , 5 ÿ J, 5 ÿ I (130) 5 ÿ I, 5 ÿ J, . . . , 5 ÿ P
[31Å0]� 8 ÿ P, . . . , 8 ÿ J, 8 ÿ I (11Å0) 8 ÿ I, 8 ÿ J, . . . , 8 ÿ P
[11Å0]� 7 ÿ P, . . . , 7 ÿ J, 7 ÿ I (13Å0) 7 ÿ I, 7 ÿ J, . . . , 7 ÿ P
[010]� 6 ÿ P, . . . , 6 ÿ J, 6 ÿ I (010) 6 ÿ I, 6 ÿ J, . . . , 6 ÿ P

î P, . . . , JI
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for orthogonal polytypes, while for non-orthogonal
polytypes the Subclass has to be taken into account.
Z symbols for non-orthogonal polytypes always corre-
spond to (�1=3; 0) (Class a) or (0; �1=3) (Class b). PID
is most conveniently expressed in the �3

n;a;3n;b�F axial
setting, which corresponds to cn � ��1=3; 0� or (0; �1=3)
for Subclass 1 and cn � �1=3; 0� or (0; 1=3) for Subclass
2. It follows that for orthogonal polytypes and Subclass 1
polytypes the stacking operators simply coincide with Z
symbols (rj � Zj), while for Subclass 2 polytypes they
are related by a 180� rotation around c� (rj � Zj � 3).

Step 4 is the computation of the PID (SN) as a func-
tion of (a, b) components of TS symbols. The compo-
nents of the jth TS layer referred to the (a, b) axes are
indicated as (Xj, Yj), to distinguish them from the
components in the (A1, A2) axes, which were labelled
(�Xj, �Yj) [equations (3) and (5)]. (Xj, Yj) are just the
sum of the (xrj

; yrj
) components from the ®rst to jth

stacking operators. However, since the c axis of the
�3n;a;3n;b�F axial setting is displaced by ÿ1=3�n�1� (where n
is the Series) along a or b (depending upon the Class),
the additional displacement �ÿj=3�n�1�; 0� (Class a) or
�0;ÿj=3�n�1�� (Class b) must be added to the (Xj, Yj)
component of the jth TS symbol to express the layer
stacking of non-orthogonal polytypes with respect to the
�3n;a;3n;b�F axial setting. In this way, TS symbols for Series
0 subfamily A polytypes always have Xj � 0 (c axis
passing through the origin of each layer).

Orthogonal polytypes:

�Xj;Yj� �
Pj

i�1

�xri
; yri
�

Class a polytypes:

�Xj;Yj� �
Pj

i�1

�xri
; yri
� � �ÿi=3n�1; 0�

Class b polytypes:

�Xj;Yj� �
Pj

i�1

�xri
; yri
� � �0;ÿi=3n�1�:

8>>>>>>>>>>>><>>>>>>>>>>>>:
�8�

Finally, in Class b the axes exchange a $ b has to be
accomplished in order to obtain the 3n;bF axial setting.
The complete TS symbols Lj(Xj, Yj) are easily obtained
from Table 5 and (8), and the PID function SN is given in
equation (9) [after Takeda & Sadanaga (1969), notation
slightly modi®ed].

SN�hkl̂� � PN
j�1

SN
j �hkl̂�

� PN
j�1

exp
�

2�i�hXj � kYj � l̂� jÿ 1�=N�	
�l̂ � l �mod N�� �9�

with the normalizing conditionPN
j�1

�SN
j �hkl̂��2 � N2: �10�

It should be considered that equation (5) is based on the
approximation of a trigonal distribution of each kind of
atom in the layer and G0 is thus an approximation of the
Fourier transform of the layer. In the regions of the
reciprocal space where G0 passes through zero and
changes sign, the relative error becomes large and
equation (5) is actually no longer applicable. In the
practice of mica polytype identi®cation, the periods
corresponding to l intervals including those regions
should not be used to derive the PID from measured
intensities. These intervals depend on the actual
chemical composition.

6. Symmetry of PID

The PID function in equation (9) can be rewritten as

SN�hkl̂� �PN
j�1

exp�2�i'j� exp
�

2�i�l̂� jÿ 1�=N�	; �11�

where

'j � hXj � kYj:

Similarly,

SN�2h; 2k;N ÿ l̂� � PN
j�1

exp�2�i2'j� exp
�

2�i

� ��N ÿ l̂�� jÿ 1�=N�	: �12�
For Series 0 polytypes, 'j can assume only the three
values 0, 1=3 or 1=3; it follows that:

cos�2�2'j� � cos�2�'j� � cos�2��ÿ'j��
sin�2�2'j� � ÿ sin�2�'j� � sin�2��ÿ'j��:

(
�13�

Also,

cosf2���N ÿ l̂�� jÿ 1�=N�g � cosf2��l̂� jÿ 1�=N�g
sinf2���N ÿ l̂�� jÿ 1�=N�g � ÿ sinf2��l̂� jÿ 1�=N�g

(
�14�

and thus

SN�2h; 2k; l̂� � SN�h; k;N ÿ l̂�: �15�
For Series 0 subfamily A polytypes, 'j in equation (11)
simply becomes kYj and, once more, it can assume only

Table 5. Expression of the kind of TS unit layer Lj in
terms of RTW symbols Aj and stacking operators rj

rj

Aj 0 (mod 2) 1 (mod 2)

0 (mod 2) Lj = D* Lj = D
1 (mod 2) Lj = T* Lj = T
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the three values 0, 1=3 orÿ1=3. From equations (12) and
(14), it follows that

SN�0; 2k; l̂� � SN�k� �k l̂� � SN�k�k;N ÿ l̂�: �16�
For all polytypes belonging to Series 0, the following
relations hold [see equation (14)]:

SN�04l̂� � SN�02;N ÿ l̂�;
SN�22l̂� � SN�11;N ÿ l̂�;
SN��22l̂� � SN��11;N ÿ l̂�:

�17�

Besides, in the case of OD polytypes, for which the PID
is de®ned in the whole subspace of non-family re¯ec-
tions, since in Series 0, Xj and Yj may take only 0, �1=3,
the following general relation holds:

SN�h� 3N; k� 3N; l̂� � SN�hkl̂�: �18�
Polytypes of subfamily A are described by only one kind
of TS layer (D or D�) and the component Xj in equa-
tions (8) and (9) is always zero. Equation (16) shows that
the distribution of the PID values has a trigonal
symmetry, obeying the following relation:

SN�02l̂� � SN��1�1l̂� � SN�1�1l̂� � SN�0�2;N ÿ l̂�
� SN�11;N ÿ l̂� � SN��11;N ÿ l̂�: �19�

Therefore, in Tables 6±14, only SN�02l̂� will be given for
subfamily A Series 0 polytypes.

For higher Series, equations (17) and (18) are satis®ed
for orthogonal polytypes, but the length of the axis
displacement for non-orthogonal polytypes is a
submultiple of the layer stagger [see equation (8) and x8]
and the same PID values correspond to different l
indices. With respect to equation (17), an origin shift and
the inversion in the reading sequence appear, which
depend in a complex way on h and k. Subfamily A
polytypes of Series> 0 never belong to Class a; the c axis
is either perpendicular (orthogonal polytypes) or
inclined towards b (Class b); for a 3N-layer polytype, the
Xj components corresponding to j � 0; 1; 2 �mod 3�
take the sequences �1=3; �1=3; 0�N or ��1=3; 1=3; 0�N
depending on the orientation parity and, for Class b
polytypes, on the Subclass. Again, because of the frac-
tional relation between axis displacement and the layer
stagger, an origin shift occurs and equation (18) is no
longer satis®ed. Finally, in the case of subfamily B and
mixed-rotation polytypes, more than one kind of TS unit
layer is required and Xj can take all the possible values

in different sequences, depending on the polytype. As a
consequence, equation (19) reduces to the centro-
symmetrical relation SN�hkl̂� � SN� �h �k;N ÿ l̂�.

7. Re¯ection conditions

In the diffraction patterns of mica polytypes, systematic
absences are due either to the space-group type [general
re¯ection conditions (Hahn & Vos, 1996)] or to local
symmetry [additional re¯ection conditions (Hahn &
Vos, 1996), Templeton effect (Templeton, 1956; Pabst,
1959, 1961; Rumanova & Belov, 1961), non-character-
istic orbits of space groups (Wondratschek, 1976;
Matsumoto & Wondratschek, 1979, 1987)]. These
absences may affect part or all of the non-family
re¯ections. The re¯ection conditions are part of the
information contained in the PID function. PID is
however de®ned only for a subspace of the non-family
re¯ections, at least for mixed-rotation polytypes. For
these polytypes, the re¯ection conditions appearing in
the subspace where PID is not de®ned may convey some
information useful for a preliminary analysis. The
complete re¯ection conditions for mica polytypes can
be obtained by Zvyagin's functions (Zvyagin, 1967;
Nespolo & Kogure, 1998), i.e. by a form of the structure
factor parameterized versus the features of the poly-
types. Since the number of polytypes grows very rapidly
with the number of layers, in Tables 6±14 the complete
re¯ection conditions for mica polytypes with up to four
layers only are given.

There are 1, 2, 6 and 26 possible mica polytypes with
1, 2, 3 and 4 layers, respectively, listed by Ross et al.
(1966). Tables 6±14 give space-group type, RTW, Z and
TS symbols, calculated re¯ection conditions and
computed PID values for these polytypes in the C1

(orthogonal polytypes) or �3
n;a;3n;b�F axial settings (non-

orthogonal polytypes). Hexagonal indices for the 3T
polytype are written in capital letters. In the real struc-
ture, the additional re¯ection conditions correspond to
low but nonzero values of the structure factor: this is
especially true in the case of dioctahedral micas, where
one of the octahedral sites is more distorted and
(ideally) vacant, although not always completely
(Pavese et al., 1997), and the corresponding weak
re¯ections have been called `dioctahedral re¯ections'
(Rieder, 1968).

Table 6. Symbols, re¯ection conditions and PID values for subfamily A orthogonal polytype (C1 setting; hexagonal
setting within parentheses)

Polytype Space-group type RTW Z TS Re¯ection conditions PID (02l)

3T P3112 [2]3 351 D(ÿ1, 0)D(1, 1)D(0, 0) k = 3n: l = 3n � h 1.7, 1.7, 1.7
P3212 [�2]3 315 D(ÿ1, 0)D(1,ÿ1)D(0, 0) [H ÿ K = 3n: L = 3n � H] 1.7, 1.7, 1.7
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Table 7. Symbols, re¯ection conditions and PID values for subfamily B orthogonal polytypes (C1 setting)

Polytype Space-group type RTW Z TS Re¯ection conditions

PID

02l 11l ÿ11l

2O Cccm [3]2 36 T(ÿ1, 0)T*(0, 0) h = 3n: l = 2n 2.0, 0.0 1.0, 1.7 1.0, 1.7
4M6 C2/c 11Å1Å1 3432 T(ÿ1, 0)T*(0, 1)T(ÿ1, 1)T*(0, 0) h = 3n, k = 3n: l = 4n 2.0, 2.45, 0.0, 2.45 1.0, 3.3, 1.7, 0.9 1.0, 0.9, 1.7, 3.3

h = 3n, k 6� 3n: l 6� 4n � 2
h 6� 3n, k = 3n: l = 2n

Table 8. Symbols, re¯ection conditions and PID values for mixed-rotation orthogonal polytypes (C1 setting)

Space-group type

PID

Polytype RTW Z TS Re¯ection conditions 02l 11l ÿ11l

4O1 Ccmm 0303 3366 D(ÿ1, 0)T(1, 0)D*(ÿ1, 0)T*(0, 0) h = 3n: l = 4n 4.0, 0.0, 0.0, 0.0 1.0, 1.7, 3.0, 1.7 1.0, 1.7, 3.0, 1.7
4O2 C2cm 131Å3 1254 T(ÿ1,ÿ1)T*(0, 1)T(ÿ1,ÿ1)T*(0, 0) h = 3n, k = 3n: l = 4n 1.0, 1.7, 3.0, 1.7 2.6, 1.7, 1.7, 1.7 2.6, 1.7, 1.7, 1.7

h 6� 3n, k = 3n: l = 2n
4O3 Cc2m 232Å3 2415 D*(1,ÿ1)T*(ÿ1, 0)D(1,ÿ1)T(0, 0) h = 3n, k = 3n: l = 4n 2.0, 0.0, 3.5, 0.0 2.6, 1.7, 1.7, 1.7 2.6, 1.7, 1.7, 1.7

h = 3n, k 6� 3n: l = 2n
4O4 C2221 1212 1245 T(ÿ1,ÿ1)D*(0, 1)T*(1,ÿ1)D(0, 0) h = 3n, k = 3n: l = 4n 1.0, 1.7, 3.0, 1.7 2.0, 2.45, 0.0, 2.45 2.0, 2.45, 0.0, 2.45

h 6� 3n, k 6� 3n: l 6� 4n � 2
4M7 C2 012Å1 3342 D(ÿ1, 0)T(1, 0)D*(ÿ1, 1)T*(0, 0) h = 3n, k = 3n: l = 4n 2.6, 1.7, 1.7, 1.7 1.0, 3.3, 1.7, 0.9 1.0, 0.9, 1.7, 3.3
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8. Discussion

The analysis of the PID of mica polytypes is a powerful
method to solve the stacking sequence of these silicates.
It can be applied to polytypes of very long period, which
could not be solved or would require very complex
solution strategies (e.g. Kogure & Nespolo, 1999a). In
spite of the fact that the difference between the PID of
polytypes with only slightly different stacking sequences
is small, Kogure & Nespolo (1999a) have shown that this
minimal difference was still suf®cient to determine the
stacking sequence of a well crystallized 36-layer poly-
type, i.e. the longest mica polytype reported to date. For
long-period polytypes, the quality of the crystal might, in
principle, become critical, but even in the worst cases
PID analysis drastically reduces the number of stacking
candidates.

Since PID is the Fourier transform of the stacking
vectors giving the relative displacements between TS
layers, it is de®ned in the homo-octahedral approxima-
tion. The presence of M2 layers is in principle revealed
by a structure re®nement.

The calculation of the PID function starting from
RTW symbols is accomplished by a computer program
(PTST98) written in Fortran V, which can be obtained
upon request from the correspondence author. Appli-
cation of the program has been exempli®ed by Kogure
& Nespolo (1999a).

8.1. A preliminary analysis to the application of PID

The analysis of the geometry of the diffraction pattern
should precede the PID analysis, since it offers impor-
tant preliminary information, which can be summarized
as follows.

(i) An analysis of the diffraction-pattern geometry is
of particular importance in the case of (suspected)
polytypes belonging to Series > 0, when twinning may
be present (Nespolo, Takeda & Ferraris, 1997; Nespolo,
Takeda, Ferraris & Kogure, 1997; Nespolo, 1999).

(ii) The number of re¯ections along reciprocal-lattice
rows corresponding to family re¯ections of the threefold
family structure unequivocally indicate if a mica poly-

type is an OD subfamily A, OD subfamily B or mixed-
rotation polytype.

(iii) The possibility exists of ®nding the same PID for
polytypes with a different lattice; this is the case for 2O
(C1 setting) and 2M2 (bF setting) polytypes, which have
identical TS symbols (and thus the same PID).

(iv) As shown by Nespolo (1999), only in the aF
settings are the family re¯ections for Series 0 polytypes
identical, while this is not true in other settings.

(v) Special attention has to be paid in the case of
triclinic polytypes belonging to Class b, which admits
three equivalent orientations, related by 2n � 60� rota-
tions around c�. Z symbols and TS symbols are different
for the three orientations but they describe three
equivalent orientations of the structural model. PID
values expressed for a given reciprocal-lattice row in a
certain orientation of the structural model correspond to
a different row in another orientation. Since these rows
are related by 2n � 60� rotations around c�, for Series 0
polytypes the corresponding PID values are in their turn
related by equation (17) or (19). For Series > 0 poly-
types, the comparison requires more attention. In this
case, the c axis of the �3

n;a;3n;b�F setting is displaced by
1=3n for each layer and the length of the axis displace-
ment is a submultiple of the layer stagger; therefore, the
origin of the PID is not the same in the three orienta-
tions of the structural model. In Table 14, the example of
the 3A1 polytype is presented. The existence of a similar
ambiguity in chlorite was reported by Brindley et al.
(1950).

8.2. Comparison with previous results

Comparison of the general results of the present
research with previous partial reports reveals some
errors.

Ross et al. (1966) gave partial re¯ection conditions for
polytypes with up to four layers (see their Table 2).
However, the possible ambiguities of the axial setting
choice were not recognized and different settings were
used to index different polytypes (four different kinds of
settings for 2M1, 3M1, 4M9, 4A2, 4A9 and 4A10 polytypes;

Table 9. Symbols, re¯ection conditions and PID values for subfamily A Series 0 Class a polytypes (aF setting)

Polytype Space-group type RTW Z TS Re¯ection conditions PID (02l)

2M1 C2/c 22Å 24 D(0, 1)D(0, 0) k = 3n: l = 2n 1.0, 1.7
4M1 C2/c 0202Å 5511 D(0, 1)D(0,ÿ1) k = 3n: l = 4n 1.0, 1.7, 3.0, 1.7

D(0, 1)D(0, 0)
4M2 C2 0222 3351 D(0, 0)D(0, 0) Same as 4M1 2.6, 1.7, 1.7, 1.7

D(0, 1)D(0, 0)
4A1² C1Å 0022Å 1113 D(0,ÿ1)D(0, 1) Same as 4M1 1.0, 0.9, 1.7, 3.3

D(0, 0)D(0, 0)
4M3 C2/c 22Å2Å2 3531 D(0, 0)D(0, 1) k = 3n: l = 4n 2.0, 2.45, 0.0, 2.45

D(0, 1)D(0, 0) k 6� 3n: l 6� 4n � 2

² Labelled 4Tc8 in Ross et al. (1966).
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Table 10. Symbols, re¯ection conditions and PID values for mixed-rotation Series 0 Class a polytypes (aF setting)

Space-group type Re¯ection conditions

PID

Polytype RTW Z TS 02l 11l ÿ11l

4M4 C2/m 0033 6663 D*(ÿ1, 0)D*(1, 0)T*(0, 0)T(0, 0) h = 3n: l = 4n 4.0, 0.0, 0.0, 0.0 1.0, 3.3, 1.7, 0.9 1.0, 0.9, 1.7, 3.3
4M5 C2 1122 2346 T*(ÿ1,ÿ1)T(ÿ1,ÿ1)D(1, 0)D*(0, 0) h = 3n, k = 3n: l = 4n 2.0, 2.45, 0.0, 2.45 2.6, 1.7, 1.7, 1.7 2.6, 1.7, 1.7, 1.7

h = 3n, k 6� 3n: l 6� 4n � 2
4A2 C1Å 11Å1Å2 6164 T*(ÿ1, 0)T(ÿ1,ÿ1)D*(1,ÿ1)D*(0, 0) h = 3n, k = 3n: l = 4n 2.0, 2.45, 0.0, 2.45 1.0, 3.3, 1.7, 0.9 2.0, 0.0, 3.5, 0.0

h = 3n, k 6� 3n: l 6� 4n � 2
h 6� 3n, k = 3n ÿ h: l = 2n

4A3 C1 132Å2Å 2364 T*(ÿ1,ÿ1)T(ÿ1,ÿ1)D*(1,ÿ1)D*(0, 0) h = 3n, k = 3n: l = 4n 2.6, 1.7, 1.7, 1.7 2.0, 2.45, 0.0, 2.45 2.6, 1.7, 1.7, 1.7
h (mod 3) = k (mod 3) 6� 3n: l 6� 4n � 2

4A4 C1 0213 2245 D*(ÿ1,ÿ1)D*(1, 1)T*(0,ÿ1)T(0, 0) h = 3n, k = 3n: l = 4n 1.0, 1.7, 3.0, 1.7 1.0, 0.9, 1.7, 3.3 2.6, 1.7, 1.7, 1.7
4A5 C1 0132 6614 D*(ÿ1, 0)T*(1, 0)T(1,ÿ1)D*(0, 0) Same as 4A4 2.6, 1.7, 1.7, 1.7 1.0, 3.3, 1.7, 0.9 1.0, 1.7, 3.0, 1.7
4A11 C1 0112Å 4456 D*(ÿ1, 1)T*(1,ÿ1)T(1, 0)D*(0, 0) Same as 4A4 1.0, 3.3, 1.7, 0.9 2.6, 1.7, 1.7, 1.7 1.0, 1.7, 3.0, 1.7
4A8² C1Å 22Å33 2425 D*(ÿ1,ÿ1)D*(1, 0)T*(0,ÿ1)T(0, 0) h = 3n, k = 3n: l = 4n 2.0, 0.0, 3.5, 0.0 1.0, 0.9, 1.7, 3.3 2.0, 2.45, 0.0, 2.45

h = 3n, k 6� 3n: l = 2n
h 6� 3n, k = 3n ÿ h: l 6� 4n � 2

4A9 C1Å 12Å21Å 1262 T(0,ÿ1)D*(ÿ1, 1)D*(1, 1)T*(0, 0) h = 3n, k = 3n: l = 4n 1.0, 0.9, 1.7, 3.3 2.0, 0.0, 3.5, 0.0 2.0, 2.45, 0.0, 2.45
h (mod 3) = k (mod 3) 6� 3n: l = 2n
h 6� 3n, k = 3n ÿ h: l 6� 4n � 2

4A10 C1Å 0011Å 2223 D*(ÿ1,ÿ1)D*(1, 1)T*(0, 0)T(0, 0) h � k = 3n: l = 4n 1.0, 0.9, 1.7, 3.3 1.0, 0.9, 1.7, 3.3 4.0, 0.0, 0.0, 0.0

² Labelled 4Tc1 in Ross et al. (1966).

Table 11. Symbols, re¯ection conditions and PID values for subfamily B Series 0 Class b polytypes (bF setting)

Space-group type Re¯ection conditions

PID

Polytype RTW Z TS 20l 11l ÿ11l

2M2 C2/c 11Å 45 T(ÿ1, 0)T*(0, 0) k = 3n: l = 2n 2.0, 0.0 1.0, 1.7 1.0, 1.7
4M9 C2 1131 4563 T*(1,ÿ1)T(0, 1)T*(1,ÿ1)T(0, 0) h = 3n, k = 3n: l = 4n 1.0, 1.7, 3.0, 1.7 2.6, 1.7, 1.7, 1.7 2.6, 1.7, 1.7, 1.7

h = 3n, k 6� 3n: l = 2n
4A6 C1Å 11Å33 4541 T*(1,ÿ1)T(0, 1)T*(1, 0)T(0, 0) h = 3n, k = 3n: l = 4n 1.0, 0.9, 1.7, 3.3 2.0, 2.45, 0.0, 2.45 1.0, 3.3, 1.7, 0.9

h = 3n, k 6� 3n: l = 2n
h (mod 3) = k (mod 3) 6� 3n: l 6� 4n � 2
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for 3A2 polytype; for 4A6 polytype; and for 4M8 poly-
type) or different planes of the same polytype (3A1, 4M1,
4M2, 4M3 and 4A8). Besides, as shown by Nespolo &
Kogure (1998), for the 3T polytype a monoclinic setting
was chosen, having an inclined a� axis parallel to that of
the 2M1 polytype. Finally, the partial re¯ection condi-
tions given for 4O2, 4M6, 4M9, 4A2, 4A6, 4A8 and 4A9 are
correct only for h and/or k 6� 0 �mod 3�. The re¯ection
conditions analysed for one or two planes only and not
for the whole reciprocal lattice erroneously led to 4M1,
4M2 and 4M3 being considered as indistinguishable.
Actually, the last one can be differentiated from the
previous two by means of the re¯ection conditions in the
(hhl) plane, as shown by Zhukhlistov et al. (1988, 1990).²
The same remark can be made for 4A3, 4A4 and 4A5

polytypes: the ®rst one can be distinguished from the
other two by looking at the geometry of the (hhl) plane
(Tables 9 and 10).

Takeda & Ross (1995) gave the re¯ection conditions
that are part of the PID information for the 26 4-layer
polytypes (see their Table 6) and the computed PID
values for several subfamily A polytypes belonging to
the three 1M, 2M1 and 3T structural series.³ However,
since the structural model orientation was not taken into
account, a few mistakes appeared in their Table 6. The
re¯ection conditions for 4O3 and 4M8 polytypes are
given for �hhl� ÿ � �hhl� planes instead of for the (0kl)
plane. The re¯ection conditions for the 4O4 polytype in
the �hhl� ÿ � �hhl� planes have not been given, while those
in the (0kl) plane of the 4M9 polytype should not be
present. The space-group type of the 4M10 polytype has
been misprinted as C2=c instead of Cc [the same
misprint occurs in the papers by Ross et al. (1966) and
Takeda (1971)]. Another misprint is in their Table 4,
where the third value of the PID for the �hhl� ÿ � �hhl�
planes of the 3M2 polytype is 2.5 and not 0.9. On the
basis of the generalized notation introduced by Nespolo
et al. (1998), all the axial settings labelled 1M should be
changed into aF, and those labelled 3M1 into 3,aF; the
settings 3Tc1 and 9Tc1 become 3,bF and 9,bF if the axial
exchange a$ b is accomplished. All polytypes
belonging to structural series 3T listed in Table 9 of
Takeda & Ross (1995) belong to Class a and the axial
setting in which PID is expressed is aF.

Polytype 3A1 belongs to subfamily A but it is a Series
1 Class b polytype. It is described by M layers in even
orientation but, being a triclinic polytype, three orien-
tations of the structural model are possible. Among
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² The orthohexagonal 12-layer indexing given by Zhukhlistov et al.
(1988, 1990) corresponds to the 4-layer monoclinic indexing shown in
Table 9 of the present paper if the condition of integrality of
monoclinic indices is taken into account.
³ The de®nition of `series' in Takeda & Ross (1995) corresponds to
that of `structural series' in Baronnet (1978): it indicates the short-
period polytype that is thought to have given origin to the long-period
ones. This should not be confused with the de®nition of Series by
Nespolo et al. (1998), which has a geometrical meaning.
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these, one corresponds to Z symbols 2 and 4, as polytype
2M1. The period along c� of an N-layer polytype is
c�N � Nc�1 (Nespolo et al., 1998). The appearance of (h0l)
and (h.3h.l) planes (C1 setting), containing only family
re¯ections, is the same for 2M1 and 3A1 polytypes
(Borutskiy et al., 1987).² However, this identity does not
hold for other planes, where non-family re¯ections
appear and no common axial setting can be found, since
polytypes belonging to a Series cannot be indexed in the
monoclinic setting of any polytype belonging to another
Series.
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